Унитарная матрица - définition. Qu'est-ce que Унитарная матрица
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Унитарная матрица - définition


Унитарная матрица         

порядка n, Матрица с комплексными элементами, результат умножения которой на комплексно сопряжённую транспонированную матрицу равен единичной матрице: . Элементы У. м. связаны соотношениями:

(i, k = 1, 2,.., n).

У. М. порядка n образуют группу (См. Группа) относительно операции умножения. У. м. с действительными элементами является ортогональной матрицей. (См. Ортогональная матрица)

Унитарная матрица         
Унита́рная ма́трица — квадратная матрица с комплексными элементами, результат умножения которой на эрмитово сопряжённую равен единичной матрице: U^\dagger U = UU^\dagger = I.
Неособенная матрица         
КВАДРАТНАЯ МАТРИЦА, ОПРЕДЕЛИТЕЛЬ КОТОРОЙ ОТЛИЧЕН ОТ НУЛЯ
Обратимая матрица; Неособенная матрица

в математике, квадратная матрица А = IIaijII1n порядка n, определитель |А| которой не равен нулю. Всякая Н. м. имеет обратную матрицу. Н. м. определяет в n-мерном пространстве невырожденное Линейное преобразование. Переход от одной системы координат к другой также задаётся Н. м.

Wikipédia

Унитарная матрица

Унита́рная ма́трица — квадратная матрица с комплексными элементами, результат умножения которой на эрмитово сопряжённую равен единичной матрице: U U = U U = I {\displaystyle U^{\dagger }U=UU^{\dagger }=I} . Другими словами, матрица унитарна тогда и только тогда, когда существует обратная к ней матрица, удовлетворяющая условию U 1 = U {\displaystyle U^{-1}=U^{\dagger }} .

Унитарные матрицы обобщают понятие ортогональных матриц, элементы которых — только действительные числа, на матрицы с компле́ксными числами.

Следующие утверждения относительно данной квадратной матрицы A {\displaystyle A} являются эквивалентными:

  1. A {\displaystyle A}  — унитарна.
  2. A {\displaystyle A^{\dagger }}  — унитарна.
  3. Столбцы матрицы A {\displaystyle A} образуют ортонормированный базис в унитарном пространстве.
  4. Строки матрицы A {\displaystyle A} образуют ортонормированный базис в унитарном пространстве.